Tetrahedron Vol. 44, No. 12, pp. 3653 to 3670, 1988 Printed in Great Britain.

# SYNTHESIS OF AZETIDINES FROM 8-CHLORO IMINES

# PAUL SULMON<sup>T</sup>, NORBERT DE KIMPE\* AND NICEAS SCHAMP

Laboratory of Organic Chemistry, Faculty of Agricultural Sciences, State University of Gent, Coupure Links 653, B-9000 Gent, Belgium

### BERNARD TINANT AND JEAN-PAUL DECLERCQ

Laboratoire de Chimie Physique et de Cristallographie, Bâtiment Lavoisier, 1, Place Louis Pasteur, B-1348 Louvain-la-Neuve, Belgium

### (Received in UK 29 February 1988)

<u>Abstract</u> - The reaction of  $\beta$ -chloro imines <u>4</u> with potassium cyanide in methanol or with lithium aluminium hydride in dry ether gave rise to 2-cyanoazetidines <u>5</u> and azetidines <u>21</u>. The reaction proceeded by nucleophilic addition of cyanide or hydride across the carbon-nitrogen double bond, followed by ringclosure. The corresponding  $\beta$ -chloro tosylhydrazones, which could either give rise to a four- or five-membered heterocycle on treatment with potassium cyanide in methanol, were shown to afford N-tosylamino 2-cyanoazetidines, exclusively.

## Introduction :

 $\omega$ -Halo imines <u>1</u> are a class of bifunctional compounds, the synthesis of which was recently described by us<sup>1,2</sup>. These compounds were prepared from the corresponding carbonyl compounds <u>3</u> i.e.  $\omega$ -halo ketones and  $\omega$ -halo aldehydes, by reaction with a primary amine<sup>1</sup> or from imines <u>2</u> by a base-induced  $\alpha$ -alkylation with a  $\alpha, \omega$ -dihaloalkane<sup>2</sup> (Scheme I).  $\omega$ -Haloimines are quite versatile reagents for the synthesis of heterocyclic compounds. In this article, the reactivity of  $\beta$ -chloro imines <u>1</u> towards nucleophiles, such as potassium cyanide and complex metal hydrides, leading to azetidines will be described.



Present address : Laboratory of Chemical Products, DSM Limburg b.v., 6160 MB Geleen, The Netherlands.

Results and discussion : Reactivity of <sup>B</sup>-Chloro\_Imines\_towards\_Potassium\_Cyanide : Synthesis\_of\_2-Cyangazetidines

In general, azetidines are an important class of heterocyclic compounds which have received considerable attention in the literature<sup>3-5</sup>. 2-Cyanoazetidines<sup>6-10</sup> have only been prepared by hydrogen cyanide addition to 1-azetines<sup>6</sup>, by reaction of triphenylphosphine dibromide with azetidine-2-carboxamides<sup>7</sup> or by cyclization of a, y-dibromonitriles with amines<sup>8</sup>. In a preliminary report<sup>11</sup> we described some examples of the novel synthesis of 2-cyano-3, 3-dimethylazetidines <u>5</u> by reaction of  $\beta$ -chloro imines <u>4</u> with potassium cyanide in methanol (Scheme II). In this article the preparation of 2-cyanoazetidines <u>5</u> from  $\beta$ -chloroimines <u>4</u> will be described in















SCHEME II

detail (Table I). Normally the reaction of  $\beta$ -chloroimines <u>4</u> with potassium cyanide in methanol, affording a-cyanoazetidines <u>5</u>, was complete within several hours (Table I), but for sterically hindered  $\beta$ -chloro imines <u>4</u> (Table I, entry 5,9 and 10) even after 50 hours or more the starting material was not totally consumed. In order to test the possibility to prepare  $\beta$ -lactams from  $\beta$ -halo imines, the reaction of  $\beta$ , $\beta$ , $\beta$ -trichloroaldimine <u>6</u>, prepared from 3,3,3-trichloro-2,2-dimethylpropanal<sup>1,12</sup>, with potassium cyanide was investigated. Unfortunately, aldimine <u>6</u>



| Table | I | : | Synthesis | of | Azetidines | 5 | and | 21 | • |
|-------|---|---|-----------|----|------------|---|-----|----|---|
|       |   |   | -         |    |            | _ |     |    |   |

| Entry     | Starting<br>Material | Ř                                                                     | R <sub>1</sub>                | R <sub>2</sub>       | R <sub>3</sub>   | Rea        | action   | condi | ti | lons <sup>a</sup> | Ŋ           | (ie | ≥ld <sup>b</sup>     |
|-----------|----------------------|-----------------------------------------------------------------------|-------------------------------|----------------------|------------------|------------|----------|-------|----|-------------------|-------------|-----|----------------------|
| <u>1</u>  | <u>4a</u>            | с <sub>6</sub> н <sub>5</sub>                                         | Me                            | Me                   | Me               | 2E         | KCN/Me   | OH    | Δ  | 20h               | <u>5a</u>   | :   | 76 <sup>C</sup>      |
| 2         | <u>4b</u>            | сн <sub>2</sub> с <sub>6</sub> н <sub>5</sub>                         | Me                            | Me                   | Me               | 2E         | KCN/Me   | OH    | ۵  | 1h                | <u>5</u> 0  | :   | 93                   |
| 3         | <u>4c</u>            | <u>i</u> -Pr                                                          | Me                            | Me                   | Me               | 2 <b>E</b> | KCN/Me   | OH    | Δ  | 2,5h              | <u>5c</u>   | :   | 96/82 <sup>d,e</sup> |
| 4         | <u>13</u>            | NHSO <sub>2</sub> C <sub>6</sub> H <sub>4</sub><br>-4-CH <sub>3</sub> | Me                            | Me                   | Me               | 2E         | KCN / MA | POR   | ۵  | 6h                | <u>5d</u>   | :   | 87/92 <sup>d,f</sup> |
| 5         | <u>4d</u>            | <sup>CH</sup> 2 <sup>C</sup> 6 <sup>H</sup> 5                         | Me                            | - (CH2               | ) <sub>5</sub> - | 2E         | KCN/Me   | OH    | Δ  | 3d                | <u>5e</u>   | :   | 84                   |
| <u>6</u>  | <u>4e</u>            | <sup>СН</sup> 2 <sup>С</sup> 6 <sup>Н</sup> 5                         | <sup>С</sup> 6 <sup>Н</sup> 5 | Me                   | Me               | 2 <b>E</b> | KCN/Me   | BOH   | Δ  | 6h                | <u>5f</u>   | :   | 93                   |
| 7         | <u>4f</u>            | <u>i</u> -Pr                                                          | <sup>с</sup> 6 <sup>н</sup> 5 | Me                   | Me               | 2E         | KCN/Me   | OH    | Δ  | 12h               | <u>5q</u>   | :   | 89                   |
| 8         | <u>4</u> g           | сн <sub>2</sub> с <sub>6</sub> н <sub>5</sub>                         | н                             | Me                   | Me               | 2 <b>E</b> | KCN/Me   | OH    | Δ  | 6d                | <u>5h</u>   | :   | 88                   |
| <u>9</u>  | <u>4h</u>            | <u>t</u> -Bu                                                          | н                             | Me                   | Me               | 2E         | KCN/Me   | OH    | Δ  | 50h               | <u>51</u>   | :   | 839                  |
| 10        | <u>41</u>            | <u>i</u> -Pr                                                          | н                             | Et                   | Et               | 2 <b>E</b> | KCN/Me   | OH    | Δ  | 24h               | <u>5j</u>   | :   | 509                  |
| 11        | <u>4g</u>            | <sup>Сн<sub>2</sub>С<sub>6</sub>н<sub>5</sub></sup>                   | H                             | Me                   | Ne               | 8 <b>e</b> | LAH/et   | her   | Δ  | 2h                | <u>21a</u>  | :   | 94                   |
| 12        | <u>4h</u>            | <u>t</u> -Bu                                                          | H                             | Me                   | Me               | 8E         | LAH/et   | her   | Δ  | 2h                | <u>21b</u>  | :   | 85                   |
| <u>13</u> | <u>41</u>            | <u>i</u> -Pr                                                          | н                             | Et                   | Et               | 8E         | LAH/et   | her   | Δ  | 1d                | <u>21c</u>  | :   | 65 <sup>g</sup>      |
| 14        | <u>4c</u>            | <u>i</u> -Pr                                                          | Me                            | Me                   | Me               | 8E         | LAH/et   | her:  | Δ  | 3h                | <u>21d</u>  | :   | 92                   |
| <u>15</u> | <u>4a</u>            | с <sub>6</sub> в <sub>5</sub>                                         | Me                            | Me                   | Me               | 8E         | LAH/et   | her   | ۵  | lh                | <u>21e</u>  | :   | 95                   |
| <u>16</u> | <u>4b</u>            | <sup>CH</sup> 2 <sup>C</sup> 6 <sup>H</sup> 5                         | Me                            | Me                   | Me               | 8E         | LAH/et   | her   | Δ  | 2h                | <u>21 f</u> | :   | 88                   |
| 17        | <u>41</u>            | с <sub>б</sub> н <sub>5</sub>                                         | Me                            | - (CH <sub>2</sub> ) | 5-               | 8E         | LAH/et   | her   | Δ  | 15d               | <u>21g</u>  | :   | 90                   |
| <u>18</u> | <u>4e</u>            | CH2C6H5                                                               | <sup>С</sup> 6 <sup>Н</sup> 5 | Me                   | Me               | 8E         | LAH/et   | her   | Δ  | 20h               | <u>21h</u>  | :   | 0 <u>à</u>           |
| <u>19</u> | <u>4f</u>            | <u>i</u> -Pr                                                          | <sup>С</sup> 6 <sup>Н</sup> 5 | Ме                   | Me               | 8 E        | LAH/et   | her   | Δ  | 2h                | <u>211</u>  | 1   | 87                   |

a : Reaction conditions (10% w/v solution); RCN = potassium cyanide; LAH = lithium aluminium hydride; & \* reflux; E = equivalents; h = hour(s); d = day(s); The reactions were normally performed on a 0.01 mol scale except otherwise indicated. All compounds gave satisfactory microanalyses : C + 0.15; H + 0.20; N + 0.200.
b : Yields refer to isolated yields (distillation, crystallisation), other yields refer to glc analyses. Reaction mixtures were isolated in nearly quantitative yield.
c : Mp 59°C d : 0.1 molar scale e : Bp 82-85°C/14mmHy f : Mp 130°C

e : Bp 82-85°C/14mmElg f : Mp 130°C

g : the rest is starting material.

<u>Table II</u> : Spectral Data (IR, <sup>1</sup>H-NMR, MS) of Azetidines 5 and 21.

| _             | IR(NaCl)                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                              |
|---------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Com-<br>pound | <sup>V</sup> C≣N<br>cm <sup>-1</sup> | <sup>1</sup> μ΄-ΝΜR (δ, CDC1 <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mass Spectrum (70eV) m/e (%)                                                                                                                                                                                                                                                                 |
| <u>5a</u>     | 2228                                 | 1.34 (3H, s, $CH_3$ ); 1.53 (3H, s,<br>$CH_3$ ); 1.71 (3H, s, $CH_3$ ); 3.57<br>(2H, s, $CH_2$ ); 6.60-7.60 (5H, m,<br>$C_6H_5$ ).                                                                                                                                                                                                                                                                                                                                                                                           | 200 (M <sup>+</sup> ,14); 145 (9); 144 (52);<br>143 (9); 129 (10); 118 (14); 106<br>(9); 105 (25); 104 (12); 77 (38);<br>51 (16); 44 (15); 43 (5); 42 (6);                                                                                                                                   |
| <u>5b</u>     | 2221                                 | 1.19 $(3H, B, CH_3)$ ; 1.25 $(6H, 2xs, C(CH_3)_2)$ ; 2.84 and 3.00 (2H, 2xd, AB, J=6.4Hz, CH_2 ring); 4.79 and 4.64 (2H, 2xd, AB, J=13.2Hz, CH_2 ring); 4.79                                                                                                                                                                                                                                                                                                                                                                 | 41 (14); 40 (100); 39 (10).<br>214 (M <sup>+</sup> ,6); 123 (8); 92 (10); 91<br>(100); 82 (5); 65 (9); 56 (9); 42<br>(5); 41 (8); 39 (5).                                                                                                                                                    |
| <u>5c</u>     | 2221                                 | $CH_{2}C_{6}H_{5}; 7.33 (5H, s, C_{6}H_{5}), 0.93 \text{ and } 1.02 (6H, 2xd, J=6Hz, CH(CH_{3})_{2}); 1.23 (6H, 2xs, 2xCH_{3}); 1.43 (3H, s, CH_{3}); 2.72 (1H, sep-tet, J=6Hz, CH(CH_{3})_{2}); 2.72 \text{ and } 2.03 (2H, 2H, 2H, 2H, 2H) = 100000000000000000000000000000000000$                                                                                                                                                                                                                                         | $166(M^+,6); 151(13); 139(6); 111$<br>(13); 95(6); 83(9); 82(6); 72<br>(20); 70(69); 69(20); 57(6); 56<br>(60); 55(15); 44(9); 43(39); 42<br>(20): 43(49); 40(100); 20(11)                                                                                                                   |
| <u>5d</u>     | 2222<br>3191<br>(v <sub>NH</sub> )   | 3.03 $(2H, 2Xd, AB, J=6.4Hz, CH_2)$ .<br>1.17 $(3H, s, CH_3)$ ; 1.23 $(6H, s, 2X$<br>$CH_3$ ; 2.45 $(3H, s, CH_3)$ ; 3.01 and<br>3.11 $(2H, 2Xd, AB, J=6.6Hz, CH_2)$ ;<br>6.30 $(1H, s, br, NH)$ ; 7.38 and<br>7.88 $(4H, 2Xd, AB, J=8Hz, C_6H_4)$ .                                                                                                                                                                                                                                                                         | (28); 41(48); 40(100); 39(11).<br>no M <sup>+</sup> ; 155(11); 139(15); 138<br>(100); 111(16); 96(22); 95(13);<br>94(12); 92(12); 91(33); 83(22);<br>69(9); 68(9); 67(11); 65(19);<br>57(33); 56(10); 55(58); 45(15);<br>43(22); 42(8); 41(33); 28(8)                                        |
| <u>5e</u>     | 2222                                 | 1.23 $(3H, \mathbf{z}, CH_3)$ ; 0.60-2.20<br>(10H, m, C <sub>6</sub> H <sub>10</sub> ); 2.74 and 3.10<br>(4H, 2xd, AB, J=6.4Hz, ring CH <sub>2</sub> );<br>3.60 and 3.78 (2H, 2xd, AB, J=12.4<br>Hz, CH, C, H, ); 7.28 (5H, S, C, H, );                                                                                                                                                                                                                                                                                      | 43(32); 42(0); 41(33); 39(8).                                                                                                                                                                                                                                                                |
| <u>5f</u>     | 2222                                 | $\begin{array}{c} \text{L}_{2} \in \mathbb{C}_{2} \in \mathbb{C}_{3}, \text{ (110 (31,3), 6}, \mathbb{C}_{13}); \\ \text{0.83 (31, s, CH_{3}); 1.37 (31, s, \mathbb{C}_{13}); 2.93 \text{ and } 2.97 (21, 2xd, AB, \mathbb{J}_{3}); 2.93 \text{ and } 2.97 (21, 2xd, AB, \mathbb{J}_{3}); \\ \text{J}=6.8 \text{Hz}, \text{ring CH}_{2}); 3.64 \text{ and } 3.90 (21, 2xd, AB, \mathbb{J}_{3}=12, 8 \text{Hz}, \text{CH}_{2} \mathbb{C}_{6}; \mathbb{H}_{2}); 7.10-7.70 (10 \text{H}_{2}, 2x6, \mathbb{H}_{2}); \end{array}$ | 276 (M <sup>+</sup> ,5); 250 (6); 194 (8); 185<br>(6); 107 (9); 105 (20); 104 (10);<br>91 (100); 77 (10); 65 (9); 57 (6);<br>56 (24); 55 (7); 51 (6); 44 (7); 43<br>(5): 41 (13): 40 (67): 39 (6).                                                                                           |
| <u>5q</u>     | 2223                                 | 0.74 (3H, s, CH <sub>3</sub> ); 0.81 and 1.02<br>(6H, 2xd, J=6.2Hz, CH (CH <sub>3</sub> ) <sub>2</sub> ); 1.28<br>(3H, s, CH <sub>3</sub> ); 2.82 (1H, septet, J=<br>6.2Hz, CH (CH <sub>3</sub> ) <sub>2</sub> ); 3.10 and 2.82<br>(2H, 2xd, AB, J=6.5Hz, CH <sub>2</sub> ); 7.00-<br>7.70 (5H, m, C <sub>6</sub> H <sub>5</sub> ).                                                                                                                                                                                          | 228 (M <sup>+</sup> , 36); 227 (8); 213 (10);<br>185 (34); 173 (19); 172 (10); 158<br>(15); 157 (85); 146 (8); 131 (25);<br>130 (17); 116 (8); 115 (13); 107<br>(15); 105 (15); 104 (100); 103<br>(15); 91 (10); 82 (8); 77 (17); 70<br>(10); 56 (68); 55 (15); 43 (27);<br>41 (27); 39 (8). |
| <u>5h</u>     | 2222                                 | 1.25 $(3H, B, CH_3)$ ; 1.44 $(3H, B, CH_3)$ ; 2.87 and 3.13 $(2H, 2xd, AB, J=6.4Hz, CH_2 ring)$ ; 3.63 $(1H, S, CHCN)$ ; 3.71 and 3.74 $(2H, 2xd, AB, J=13Hz, CH_2C_6H_5)$ ; 7.37 $(5H, B, C_6H_5)$ .                                                                                                                                                                                                                                                                                                                        | 200(M <sup>+</sup> ,6); 155(7); 114(7); 92<br>(12); 91(100); 65(12); 56(19);<br>55(5); 41(15); 40(22); 39(7).                                                                                                                                                                                |

# Table II : continued

|             | IR(NaCl)            | _                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|---------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Com-        | VC≣N                | <sup>1</sup> H-NMR (8, CDC1 <sub>3</sub> )                                        | Mass Spectrum (70eV) m/e (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| pound       | (cm <sup>-1</sup> ) | -                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u>5i</u>   | 2239                | 0.98 (9H, s, t-Bu); 1.11 (3H, s,<br>CH.): 1.45 (3H.s.CH.): 2.88                   | 166(M <sup>+</sup> ,4); 152(11); 151(82); 97<br>(5): 95(7): 82(16): 70(23): 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                     | (2H, e, CH), 3, 62 (1H, e, CH).                                                   | (9), $58(18)$ , $57(100)$ ; $56(39)$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |                     |                                                                                   | (5,7) $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7)$ $(5,7$ |
|             |                     |                                                                                   | (18): 41(77): 40(7): 39(25).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 51          | 2239                | 0.92 and $1.02$ (6H, 2xd, $J=6Hz$ ,                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -           |                     | CH(CH <sub>2</sub> ) <sub>2</sub> ); 0.60-2.02 (10H,m,                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |                     | 2xCH <sub>2</sub> CH <sub>2</sub> ); 2.50 (1H,septet,J=                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |                     | $(H_2, -3)$<br>6Hz, CH(CH <sub>2</sub> ), 2.65 and 3.15                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |                     | (2H, 2xd, AB, J=6.6Hz, CH, ring);                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |                     | 3.52 (1H, s, CHCN).                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 21 <b>a</b> | -                   | 1.22 (6H, s, (CH <sub>2</sub> ) <sub>2</sub> C); 2.99 (4H,                        | 175(M <sup>+</sup> ,5); 174(4); 120(6); 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                     | $= \frac{-3}{2}$<br>s,ring CH <sub>2</sub> (2x)); 3.57 and 3.63                   | (3); 118(4); 98(4); 92(13); 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1           |                     | (2H, 2xd, AB-eystem, J=12Hz, CH <sub>a</sub> C,                                   | (100); 65(11); 57(2); 56(6); 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |                     | C_). 7.28 (5H,s,C,H_).                                                            | (4); 42(8); 42(8); 41(15); 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                     | 5 6-5                                                                             | (6); 39(9).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 21b         | -                   | 0.91 (9H, s, C(CH <sub>2</sub> ) <sub>2</sub> ); 1.17 (6H,                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |                     | $(CH_2)_2$ ; 2.91 (4H,s,ring CH <sub>2</sub> ); 2.91 (4H,s,ring CH <sub>2</sub> ) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |                     | (2x)).                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u>21c</u>  | -                   | 0.89 (6H,d,J=6Hz,CH(C <u>H</u> 3));                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ŀ           |                     | 0.77 (6H,t,J=7Hz,(CH3CH2));                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |                     | 1.58 $(4H,q,J=7Hz,(CH_3CH_2));$                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |                     | 2.29 (1H, septet, J=6Hz, CH (CH3));                                               | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                     | 2.90 (6H,s,ring C <u>H</u> 2(2x)).                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u>21d</u>  | -                   | 0.90 and 0.98 (6H,2xd,J=6,0Hz,                                                    | 141(M <sup>+</sup> ,12); 126(15); 115(5); 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |                     | СН(С <u>Н</u> 3) <sub>2</sub> ); 1.01 (3Н, <b>s</b> ,С <u>Н</u> 3);               | (6); 87(9); 86(73); 85(20); 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                     | 1.12 (3H,s,C <u>H</u> <sub>3</sub> ); 1.07 (3H,d,J=                               | (18); 83(5); 73(5); 72(58); 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                     | 6.4Hz,CHCH <sub>3</sub> ); 2.35 (1H, septet,                                      | (11); 70(100); 69(9); 60(14);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                     | $J=6H_2, C_{H_1}(CH_3)_2$ ; 2.82 (1H,q,J=                                         | 58(14); 57(18); 56(43); 55(33);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |                     | 6.4Hz,CHCH3); 2.52 and 3.16                                                       | 53(4); 45(10); 44(93); 43(40);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                     | $(2H, 2xd, AB, J=6.8Hz, CH_2)$ .                                                  | 42(40); 41(44); 40(12); 39(13).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u>21e</u>  | -                   | 1.07 (3н,в,С <u>н</u> <sub>3</sub> ); 1.18 (3н,в,                                 | 175(M <sup>+</sup> ,22); 120(19); 119(100);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1           |                     | C <u>H</u> <sub>3</sub> ); 1.24 (3H,d,J=6.4Hz,C <u>H</u> <sub>3</sub>             | 118(13); 106(10); 105(41); 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                     | CH); 3.25 and 3.55 (2H,2xd,AB,                                                    | (85); 91(5); 78(7); 77(50); 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                     | J=6.4H2,C <u>H</u> 2); 3.64 (1H,q,J=                                              | (11); 51(15); 43(6); 42(6); 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                     | 6.4Hz,CHCH <sub>3</sub> ); 6.30-7.40 (5H,m,                                       | (16); 40(21); 39(10).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             |                     | с <sub>6</sub> <u>н</u> 5).                                                       | <b>•</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <u>21f</u>  | -                   | (CC1 <sub>4</sub> ); 0.85 (3H,d,J=6.2Hz,                                          | 189(M',7); 188(4); 176(4); 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                     | <u>Сн</u> <sub>3</sub> Сн); 1.00 (3н, <b>s</b> ,С <u>н</u> <sub>3</sub> ); 1.11   | (4); 134(7); 133(4); 132(7);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1           |                     | $(3H, s, CH_3)$ ; 2.48 and 3.02 (2H,                                              | 120(8); 118(5); 106(8); 105(4);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |                     | 2xd, AB, J=6.2Hz, CH <sub>2</sub> ); 2.82 (1H,                                    | 93(4); 92(34); 91(100); 89(4);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                     | $q, J=6.2Hz, CH_3CH)$ ; 3.42 and 3.66                                             | 77(4); 70(8); 65(13); 57(4); 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |                     | $(2H, 2xd, AB, J=12.4Hz, CH_2); 7.22$                                             | (7); 55(15); 51(4); 43(4); 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1           |                     | (5H,8,C <sub>6</sub> <u>H</u> 5).                                                 | (8); 41(13); 40(7); 39(6).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Table | II | : | continued | l |
|-------|----|---|-----------|---|
|       |    |   |           |   |

| Com-<br>pound | IR(NaCl)<br>VCEN<br>(cm <sup>-1</sup> ) | <sup>1</sup> Β-ΝΜR (δ, CDC1 <sub>3</sub> )                           | Mass Spectrum (70eV) m/e (%)                 |
|---------------|-----------------------------------------|----------------------------------------------------------------------|----------------------------------------------|
| <u>21q</u>    | -                                       | 0.60-2.00 (10H,m,C <sub>5H10</sub> ); 1.37                           | 215(M <sup>+</sup> ,12); 120(16); 119(100);  |
|               |                                         | (3H,d,J=6.6Hz,CH <sub>3</sub> CH); 3.31 and                          | 118(5); 106(11); 105(20);104(28);            |
|               |                                         | 3.75 (2H, 2xd, AB, J=6.5Hz, CH <sub>2</sub> );                       | 81(6); 77(15); 67(4); 55(4);                 |
|               |                                         | 3.71 (1H,q,J=6.6Hz,CH <sub>3</sub> C <u>H</u> );                     | 51(4); 41(7); 40(16).                        |
|               |                                         | 6.30-7.50 (5H,m,C <sub>6H5</sub> ).                                  |                                              |
| 211           | -                                       | 0.76 and 0.98 (6H, $2xd$ , $J=6Hz$ ,                                 | 203(M <sup>+</sup> ,10); 202(3); 188(5); 148 |
| Ì             |                                         | Сн(Сн <sub>3</sub> ) <sub>2</sub> ); 0.78 (3н, в, Сн <sub>3</sub> ); | (12); 147(27); 146(11); 133(12);             |
| 1             |                                         | 1.16 (3H, s, CH <sub>3</sub> ); 2.45 (1H, sep-                       | 132(100); 131(5); 118(4); 117                |
|               |                                         | $tet, J=6Hz, CH(CH_3)_2$ ; 2.66 and                                  | (16); 115(4); 113(3); 106(6);                |
|               |                                         | 3.20 (2H, 2xd, AB, J=6.4Hz, CH <sub>2</sub> );                       | 105(14); 104(14); 103(3); 91                 |
|               |                                         | 3.81 (1H, 8, CHC <sub>6</sub> H <sub>5</sub> ); 7.00-7.50            | (12); 90(3); 84(4); 79(4); 78                |
| 1             |                                         | (5H,m,C <sub>6</sub> H <sub>5</sub> ).                               | (4); 77(6); 70(6); 56(13); 55                |
|               |                                         |                                                                      | (6); 43(11); 42(3); 41(10); 39               |
|               |                                         |                                                                      | (4).                                         |

did not react over a period of 8 days with potassium cyanide in methanol to form the desired 2-cyano-4,4-dichloroazetidine  $\underline{7}$  (Scheme III) but resulted in complete recovery of the starting material. This functionalized a-cyanoazetidine  $\underline{7}$  would have been a suitable precursor for the preparation of  $\beta$ -lactams.

The synthesis and the spectral data of  $\alpha$ -cyanoazetidines are given in Tables I, II and III. Several  $\beta$ -chloro imines were not previously described, not even in our previous article on the synthesis of these compounds. All new  $\beta$ -chloro imines  $\underline{4}$  and  $\beta$ -chloro tosylhydrazone  $\underline{13}$ , which were used in the synthesis of azetidines, are described in Tables IV (IR, <sup>1</sup>H-NMR, MS) and V ( ${}^{13}C$ -NMR).

For comparative reasons  $\beta$ -bromoketone <u>8</u> was reacted under the same reaction conditions as the  $\beta$ -halo imines with potassium cyanide in methanol leading to the



SCHEME IV

| Table III : <sup>13</sup> C-NMR Spectral Data | ( $\delta$ , CDC1 <sub>3</sub> ) of Azetidines <u>5</u> and <u>21</u> . |
|-----------------------------------------------|-------------------------------------------------------------------------|
|-----------------------------------------------|-------------------------------------------------------------------------|

| Com-<br>pound | CEN<br>(#) | <u>C</u> R <sub>1</sub> | <u>C</u> R <sub>2</sub> R <sub>3</sub><br>(s) | CH <sub>2</sub><br>(t) | R <sub>1</sub> =CH <sub>3</sub><br>CH <sub>3</sub> (q) | $R_2 = R_3 = CH_3$<br>C(CH_3)2(q) | N- <u>C</u> | <u>C</u> o<br>(d) | <u>C</u> ∎<br>(d) |             | <u>С</u> р | 1f N−C<br>≠ Cq<br><u>C</u> q (s) | Other<br>signals                                                 |
|---------------|------------|-------------------------|-----------------------------------------------|------------------------|--------------------------------------------------------|-----------------------------------|-------------|-------------------|-------------------|-------------|------------|----------------------------------|------------------------------------------------------------------|
| <u>5a</u>     | 119.3      | 66.5                    | 38.3                                          | 60.6                   | 20.3                                                   | 25.3;22.3                         | 146.8       | 129.1;            | 119.5             | and         | 113.3      |                                  | -                                                                |
|               |            | (\$)                    |                                               |                        |                                                        |                                   | (8)         |                   | (3xd)             |             |            |                                  |                                                                  |
| <u>5</u> 6    | 119.3      | 68.5                    | 38.2                                          | 63.5                   | 19.8                                                   | 24.2;22.4                         | 56.7        | 128.9;            | 128.2             | and         | 127.2      | 137.3                            | -                                                                |
|               | 110.2      | (s)                     |                                               |                        |                                                        | 01 (                              | (t)         |                   | (3xd)             |             |            |                                  |                                                                  |
| 20            | 119.3      | 60.9                    | 30.5                                          | 62.5                   | 19.9                                                   | 24.6;22.7                         | 53.5        | -                 | -                 |             | -          | -                                | 22.1 and 21.4                                                    |
| 5.4           | 118.5      | (8)                     | 36 4                                          | 68 0                   | 14.2                                                   | 24 1.21 0                         | (a)         | 135 4ª.           | 120 5             | <b>a</b> nd | 170 7      | 144 38                           | $(2xq,CH(CH_3)_2)$                                               |
| <u> </u>      |            | ( <b>n</b> )            | 50.4                                          | 00.0                   | 10.1                                                   | 24.1,21.7                         | -           | (2xd.             | 129.5             | 4110        | 120.2      | 144.2                            | 21.0 (q, <u>c</u> n <sub>3</sub> c <sub>6</sub> n <sub>4</sub> ) |
| 5e            | 119.0      | 68.8                    | 42.1                                          | 61.0                   | 19.6                                                   | -                                 | 56.8        | 128.9;            | 128.2             | and         | 127.2      | 137.4                            | 34.5; 31.1; 25.6;                                                |
| _             |            | (s)                     |                                               |                        |                                                        |                                   | (t)         | •                 | (3xd)             |             |            |                                  | 22.9 and 22.8                                                    |
|               |            |                         |                                               |                        |                                                        |                                   |             |                   |                   |             |            |                                  | (5xt;-(CH <sub>2</sub> ) <sub>5</sub> -)                         |
| <u>5f</u>     | 118.4      | 75.1                    | 41.8                                          | 62.3                   | -                                                      | 24.2;23.4                         | 56.7        | 128.8             | 128.5             |             | 127.3      | 136.9                            | - 2 5                                                            |
|               |            | (s)                     |                                               |                        |                                                        |                                   | (t)         | 128.6             | 128.4             |             | 125.8      | 135.8                            |                                                                  |
|               |            |                         |                                               |                        |                                                        |                                   |             |                   | (6xd)             |             |            |                                  |                                                                  |
| <u>5</u> g    | 118.1      | 74.5                    | 39.7                                          | 62.0                   | -                                                      | 24.5;24.0                         | 54.3        | 128.3;            | 128.0             | and         | 126.4      | 137.3                            | 21.6 and 19.7                                                    |
|               |            | (:)                     |                                               |                        |                                                        |                                   | (d)         |                   | (3xd)             |             |            |                                  | (2xq,CH(CH <sub>3</sub> ) <sub>2</sub> )                         |
| 20            | 11/.4      | 62.0                    | 35.9                                          | D4.4                   | -                                                      | 26./;24.4                         | 60.8        | 128.7;            | 128.4             | and         | 127.5      | 136.5                            | -                                                                |
| 54            | 119 5      | (a)<br>55 3             | 33 4                                          | 57 3                   | _                                                      | 76 5.7/ 0                         | (t)<br>52 6 |                   | (3xd)             |             |            |                                  | 3/ 3 (5 (61) ) )                                                 |
| <u>, 77</u>   | 119.5      | (4)                     |                                               | 57.5                   | -                                                      | 20.3;24.9                         | ()          |                   | -                 |             |            | -                                | $24.3 (q, (\underline{CH}_3)_3)$                                 |
| 51            | 118.7      | 59.3                    | 40.9                                          | 60.3                   | -                                                      | -                                 | 57.4        |                   | -                 |             |            | _                                | 29.1 and 26.0 (2x                                                |
|               |            | (d)                     |                                               |                        |                                                        |                                   | (d)         |                   |                   |             |            |                                  | t,2xCH_CH_); 19.7                                                |
|               |            |                         |                                               |                        |                                                        |                                   |             |                   |                   |             |            |                                  | and 19.6 (2xq,                                                   |
|               |            |                         |                                               |                        |                                                        |                                   |             |                   |                   |             |            |                                  | CH(CH <sub>3</sub> ) <sub>2</sub> ); 7.9                         |
|               |            |                         |                                               |                        |                                                        |                                   |             |                   |                   |             |            |                                  | and 7.8 (2xrg,                                                   |
|               |            |                         |                                               |                        |                                                        |                                   |             |                   |                   |             |            |                                  | 2×CH2CH3)                                                        |
| <u>21a</u>    | -          | 66.7                    | 31.5                                          | 66.7                   | -                                                      | 27.4                              | 63.7        | 128.2;            | 128.1             | and         | 126.6      | 138.7                            | -                                                                |
| <u>-</u>      |            | (t)                     |                                               |                        |                                                        |                                   | (t)         |                   | (3xd)             |             |            |                                  |                                                                  |
| 216           | -          | 58,7                    | 28.7                                          | 58.7                   | -                                                      | 27.4                              | 51.4        |                   | -                 |             |            | -                                | 24.1 (q, $C(\underline{CH}_3)_3$ )                               |
| 210           | _          | (E)<br>62 5             | 26.7                                          | 42 E                   | _                                                      | _                                 | (B)<br>50 7 |                   |                   |             |            |                                  |                                                                  |
| <u> 410</u>   | -          | (t)                     | 50.7                                          | 02.5                   | -                                                      | -                                 | (4)         |                   | -                 |             |            | -                                | 19.6 (2.0  CH(CH))                                               |
|               |            | ~~/                     |                                               |                        |                                                        |                                   | (0)         |                   |                   |             |            |                                  | 8.2 (g 2×CH CH )                                                 |
| 21d           | -          | 69.3                    | 32.4                                          | 64.6                   | 17.5                                                   | 28.1;22.3 <sup>ª</sup>            | 59.4        |                   | -                 |             |            | -                                | $21.4^{a}$ and $20.2^{a}$                                        |
|               |            | (d)                     |                                               |                        |                                                        | •                                 | (d)         |                   |                   |             |            |                                  | (2xq,CH(CH_)_)                                                   |
| <u>21e</u>    | -          | 68.3                    | 34.3                                          | 63.7                   | 16.6                                                   | 27.3;22.3                         | 152.5       | 128.8;            | 117.5             | and         | 112.1      | -                                | - 3.2                                                            |
|               |            | (d)                     |                                               |                        |                                                        |                                   | (=)         |                   | (3xd)             |             |            |                                  |                                                                  |
| <u>21f</u>    | -          | 70 <b>.3</b>            | 34.5                                          | 65.5                   | 15.0                                                   | 27.4;21.9                         | 62.4        | 128.7;            | 128.0             | and         | 126.7      | 139.0                            | -                                                                |
|               |            | (d)                     |                                               |                        |                                                        |                                   | (t)         |                   | (3xd)             |             |            |                                  |                                                                  |
| <u>21g</u>    | +          | 68.6                    | 38.8                                          | 61.5                   | 16.1                                                   | -                                 | 152.4       | 128.9;            | 117.3             | and         | 111.9      | -                                | 37.7; 31.5; 26.0;                                                |
|               |            | (0)                     |                                               |                        |                                                        |                                   | (s)         |                   | (3xd)             |             |            |                                  | 23.2 and 22.9                                                    |
| 211           | -          | 77.3                    | 35 1                                          | 63 5                   | _                                                      | 27 9.21 4                         | 50 ×        | 127 4.            | 126 0             | <b></b>     | 136 F      | 141 7                            | $(5xt, -(\underline{CH}_2)_5^{-})$                               |
| <u> </u>      | -          | (d)                     |                                               | ,                      | -                                                      | -/.7;21.0                         | (4)         | 14/.0;            | 120.9<br>(3wd)    | ang         | 120.3      | 141./                            | 43.3 #DG 20.1;                                                   |
|               |            |                         |                                               |                        |                                                        |                                   | (4)         |                   | (JAU)             |             |            |                                  | (****, CE ( <u>CE</u> 3/)                                        |

a : or vice versa.

<u>Table IV</u> : Spectral Data (IR, <sup>1</sup>H-NMR, MS) of  $\beta$ -Chloro imines <u>4</u> and <u>13</u><sup>a</sup>.

| Com-<br>pound | $IR(NaCl)$ $VC=N$ $(cm^{-1})$                                | <sup>1</sup> H-NMR (CDCl <sub>3</sub> , 60MHz)<br>δ(ppm)                                                                                                                                                                                                                                                                                              | Mass Spectrum (70eV)<br>m/e (rel. intensity %)                                                                                                                                                                                                                                                                     |
|---------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13            | 1600 <sup>b</sup><br>3242 <sup>b</sup><br>(v <sub>NH</sub> ) | 1.10 (6H,s, (CH <sub>3</sub> ) <sub>2</sub> C); 1.78 (3H,<br>s,CH <sub>3</sub> -C=N); 2.42 (3H,s,CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> );<br>3.51 (2H,s,CH <sub>2</sub> Cl); 7.32 and<br>7.88 (4H,2xd,AB-system,J=8.4Hz,<br>C <sub>6</sub> H <sub>4</sub> ); 8.10 (1H,s,br,N <u>H</u> ).                                                      | 302(H <sup>+</sup> ,2); 267(11); 157(9); 149<br>(6); 148(4); 147(17); 146(6);<br>139(4); 117(4); 111(6); 97(8);<br>92(6); 91(25); 89(6); 86(8); 84<br>(13); 83(100); 82(8); 81(11);<br>71(6); 70(6); 69(8); 67(9); 65<br>(15); 57(23); 56(42); 55(53);<br>53(8); 51(9); 49(25); 43(43);<br>42(15); 41(64); 39(15). |
| <u>4d</u>     | 1654                                                         | 1.20-2.40 (10H,m,C <sub>6</sub> H <sub>10</sub> ); 1.84<br>(3H,s,CH <sub>3</sub> C=N); 3.64 (2H,s,<br>CH <sub>2</sub> C1); 4.57 (2H,s,CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> );<br>7.00-7.70 (5H,s,C <sub>6</sub> H <sub>5</sub> ).                                                                                                            | 263(M <sup>+</sup> ,1); 229(9); 228(46); 200<br>(31); 149(8); 147(8); 132(6);<br>106(8); 104(9); 96(12); 95(10);<br>93(6); 92(11); 91(100); 81(18);<br>79(8); 77(15); 67(10); 65(14);<br>55(13); 51(6); 43(10); 42(6);<br>41(15); 40(34); 39(9).                                                                   |
| <u>4e</u>     | 1645                                                         | $(CC1_4)$ : 1.24 $(6H, s, C(CH_3)_2)$ ;<br>3.72 $(2H, s, CH_2C1)$ ; 4.22 $(2H, s, CH_2C_6H_5)$ ; 7.19 $(5H, s, CH_2C_6H_5)$ ;<br>6.9-7.4 $(5H, m, C_6H_5)$ .                                                                                                                                                                                          | no $M^+$ ; 250 (4); 195 (4); 194 (5);<br>162 (3); 107 (10); 106 (3); 105<br>(28); 104 (3); 92 (5); 91 (40); 79<br>(3); 78 (3); 77 (12); 65 (5); 58<br>(31); 57 (3); 56 (14); 55 (4); 51<br>(6); 44 (10); 43 (100); 42 (8); 41<br>(9); 40 (84); 39 (8).                                                             |
| <u>4f</u>     | 1641                                                         | 0.98 (6H,d,J=6.4Hz,CH( $CH_3$ ) <sub>2</sub> );<br>1.14 (6H,B,C( $CH_3$ ) <sub>2</sub> ); 3.14 (1H,<br>Beptet,J=6.4Hz,CH(CH <sub>3</sub> ) <sub>2</sub> ); 3.69<br>(2H,B,CH <sub>2</sub> ); 6.80-7.50 (5H,M,<br>C <sub>6</sub> H <sub>5</sub> ).                                                                                                      | no M <sup>+</sup> ; 188(7); 147(10); 146(25);<br>132(24); 105(16); 104(100); 91<br>(8); 84(12); 77(12); 74(20); 59<br>(30); 58(5); 56(11); 55(7); 45<br>(30); 44(10); 43(26); 42(34); 41<br>(26); 40(20); 39(6).                                                                                                   |
| <u>41</u>     | 1665                                                         | 0.79 (6H,t,J=7.3Hz,2xC <u>H</u> <sub>3</sub> CH <sub>2</sub> );<br>1.15 (6H,d,J=6.2Hz,CH(C <u>H</u> <sub>3</sub> ) <sub>2</sub> );<br>1.00-2.00 (4H,m,2xC <u>H</u> <sub>2</sub> CH <sub>3</sub> ); 3.32<br>(1H,septet,J=6.2Hz,C <u>H</u> (CH <sub>3</sub> ) <sub>2</sub> );<br>3.70 (2N,s,C <u>H</u> <sub>2</sub> Cl); 7.46 (1H,s,<br>C <u>H</u> =N). | -                                                                                                                                                                                                                                                                                                                  |
| 41            | 1660                                                         | 1.20-2.40 (10H,m,C <sub>6</sub> <u>H</u> <sub>10</sub> ); 1.77<br>(3H,s,C <u>H</u> <sub>3</sub> C=N); 3.68 (2H,s,C <u>H</u> <sub>2</sub> );<br>6.50-7.50 (5H,m,C <sub>6</sub> <u>H</u> <sub>5</sub> ).                                                                                                                                                | 249 (M <sup>+</sup> ,7); 215(13); 214(69); 143<br>(7); 133(7); 119(11); 118(100);<br>104(7); 95(4); 93(7); 91(12); 81<br>(4); 79(4); 78(8); 77(76); 68<br>(8); 66(7); 57(9); 55(11); 53<br>(8); 51(13); 43(9); 42(8); 41<br>(26); 39(9).                                                                           |

a : All other  $\beta$ -chloro imines were reported in ref. 1.

b : IR taken in KBr.

| Com-<br>pound | <u>C</u> =N  | <u>C</u> R2R3<br>(m) | CH <sub>2</sub> C1<br>(t) | if $R_2 = R_3 = CH_3$<br>C(CH <sub>3</sub> ) <sub>2</sub> (q) | พ- <u>c</u>              | $\begin{array}{c} \text{if } R_1 = CH_3 \\ \underline{CH}_3 = C = N \\ (q) \end{array}$ | Other signals                                                                                                                                                                               |
|---------------|--------------|----------------------|---------------------------|---------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>13</u>     | 159.9<br>(8) | 43.5                 | 52.9                      | 23.5                                                          | -                        | 12.1                                                                                    | 143.9 $(s, \underline{Cq})$ ; 135.3 $(s, \underline{Cp})$ ;<br>129.4 and 128.0 $(2xd, \underline{Co} \text{ and} \underline{Cm})$ ; 21.5 $(q, \underline{CH}_3C_6H_4)$ .                    |
| <u>4</u> d    | 171.4<br>(в) | 48.4                 | 54.7 <sup>b</sup>         | -                                                             | 52.1<br>(t) <sup>b</sup> | 14.0                                                                                    | 140.8 (s, <u>Cq</u> ); 128.2; 127.4<br>and 126.2 (3xd, <u>Co</u> , <u>Cm</u> and <u>Cp</u> );<br>32.2; 26.0 and 22.5 (3xt,<br>5x <u>CH</u> <sub>2</sub> ).                                  |
| <u>4e</u>     | 175.7<br>(s) | <b>4</b> 5.0         | 53.9 <sup>b</sup>         | 24.7                                                          | 56.7<br>(t) <sup>b</sup> | -                                                                                       | 136.6 and 140.5 (2xs,2xCq);<br>128.3;128.1; 127.9; 127.3;<br>126.7 and 126.3 (6xd,2x(Co,<br>Cm and Cp)).                                                                                    |
| <u>4f</u>     | 171.0<br>(s) | 44.1                 | 54.3                      | 23.6 <sup>b</sup>                                             | 52.4<br>(d)              | -                                                                                       | 137.1 (s, $\underline{Cq}$ ); 128.0; 127.5<br>and 126.8 (3xd, $\underline{Co}$ , $\underline{Cm}$ and $\underline{Cp}$ );<br>24.7 (g, ( $\underline{CH}_3$ ) <sub>2</sub> C) <sup>b</sup> . |
| <u>41</u>     | 165.0<br>(d) | 46.3                 | 47.5                      | -                                                             | 62.0<br>(đ)              | -                                                                                       | 7.2 $(q, CH_3CH_2)$ ; 26.9 $(t, CH_3CH_2)$ ; 24.3 $(q, C(CH_3)_2)$ .                                                                                                                        |
| 41            | 172.4<br>(s) | 47.9                 | 52.1                      | -                                                             | 152.0<br>(s)             | 16.0                                                                                    | 129.0; 122.8 and 118.7 (3xd,<br>Co,Cm and Cp); 32.4; 26.1 and<br>22.5 (3xt,5xCH <sub>2</sub> ).                                                                                             |

Table V : <sup>13</sup>C-NMR Spectral Data ( $\delta$ , CDCl<sub>3</sub>) of  $\beta$ -chloro imines <u>4</u> and <u>13</u><sup>a</sup>.

a : All other  $\beta$ -chloro imines were reported in ref. 1.

b : or vice versa.

formation of 2-cyanooxetane 9 (Scheme IV). It was unexpected that this reaction was slower than the reaction of  $\beta$ -chloro imines 4 with potassium cyanide in methanol. The solvent also had an important influence on the reaction. If the reaction was performed in methanol, oxetane 9 and 10 were present in the reaction mixture while in isopropanol only oxetane 9 could be observed. Oxetane 10 is formed from oxetane 9 by addition of the solvent (methanol) to the nitrile function. In contrast to 2-cyanoazetidines, 2-cyanooxetanes are better known in the literature<sup>13-25</sup>. They were already prepared by photochemical or thermal cycloaddition of an alkenenitrile to a carbonyl compound<sup>14-23</sup> or by reaction of  $\beta$ -chloroketones or  $\beta$ -tosyloxyketones with potassium cyanide in different solvents<sup>13,24,25</sup>.

The reaction mechanism for the formation of 2-cyanoazetidines 5 and for the formation of 2-cyanoaxetane 9 can be explained as originating from a nucleophilic addition of cyanide across the double bond (imino function, carbonyl function) with the formation of intermediate 11 or 12, followed by intramolecular nucleophilic substitution and expulsion of a halide anion (Scheme V). Via this reaction, several 2-cyanoazetidines 5 were prepared, among others 2-benzyl-1-cyano-1-methyl-2-azaspiro[3,5]nonane 5e and 2-cyano-1-(4-methylphenylsulphonyl)amino-2,3,3,-trimethylazetidine 5d. By reaction of  $\beta$ -chlorohydrazone 13 with potassium cyanide in methanol, the structure of the solid reaction product was not immediately clear.



SCHEME VII

Bither 2-cyanoazetidine 5d or 3-cyanopyrazolidine 14 could be expected as the reaction product (Scheme VII). These two possible compounds (5d and 14) would result from cyanide adduct 15, formed by addition of cyanide across the imino

<u>5d</u>

SCHEME VI



function. Intermediate <u>15</u> can either give rise to 2-cyanoazetidine <u>5d</u> by expulsion of a chloride anion (route a), but it is also possible that adduct <u>15</u> would give a ring closure to 3-cyanopyrazolidine <u>14</u> (route b). It was not clear from the spectral data (IR, MS, <sup>1</sup>H-NMR, <sup>13</sup>C-NMR) to distinguish between a four-membered or a five-membered heterocyclic structure. Therefore, an X-ray crystallographic analysis of the reaction product was performed, revealing that azetidine <u>5d</u> was formed from  $\beta$ -chlorohydrazone <u>13</u> on reaction with cyanide. The principal crystallographic parameters of azetidine <u>5d</u> are as follows : Mr = 293.39, triclinic, P-1, a = 7.108 (2), b = 15.129 (3), c = 7.404 (2) Å, a = 87.99 (2), 8 = 75.98 (2), Y = 85.66 (2)°, V = 770.2 (3) Å<sup>3</sup> Z = 2, Dx = 1.27 g. cm<sup>-3</sup>, CuR<sub>a</sub>,  $\lambda$  = 1.54178 Å,  $\mu$  = 18.71 cm<sup>-1</sup>, P(OOO) = 312, R = 0.065 for 2276 observed reflections. Figure 1 gives a stereoscopic view of the structure of azetidine <u>5d</u>. More details about the X-ray analysis are given in Tables VI-IX.

<u>Table VI</u> : Atomic coordinates (X10<sup>4</sup>) and equivalent temperature factors ( $\mathbb{A}^{2}$ ).

|            | x/#      | y/b      | 2/c      | Bay     |
|------------|----------|----------|----------|---------|
| н          | 11269(3) | 1934(2)  | 3406(3)  | 4.45(4) |
| 12         | 12040(4) | 1292(2)  | 1881(4)  | 4.34(5) |
| :3         | 14081(4) | 1370(2)  | 2349(4)  | 5.18(6) |
| <b>. .</b> | 12907(5) | 1697(3)  | 4274(4)  | 5.14(6) |
| 15         | 9336(3)  | 1874(2)  | 4443(3)  | 4.65(4) |
| 6          | 8162(1)  | 2856(1)  | 4927(1)  | 4.79(1) |
| 77         | 8094(4)  | 3285(2)  | 3202(3)  | 6.27(5) |
| 78         | 6409(3)  | 2659(2)  | 6243(3)  | 6.19(5) |
| .9         | 9595(4)  | 3454(2)  | 6006(4)  | 4.53(5) |
| :10        | 11109(6) | 3899(2)  | 4932(5)  | 5.86(6) |
| 11         | 12349(6) | 4294(2)  | 5782(5)  | 6.21(7) |
| 312        | 12079(5) | 4266(2)  | 7692(4)  | 5.22(6) |
| :13        | 10512(3) | 3854 (2) | 8741 (5) | 5.51(6) |
| 214        | 9266(5)  | 3440(2)  | 7919(4)  | 5.21(6) |
| :15        | 13486(7) | 4675(3)  | 8581(7)  | 6.94(9) |
| 36         | 11336(4) | 402(2)   | 2376(4)  | 4.77(5) |
| 117        | 10824(5) | -295(2)  | 2724(4)  | 6.48(6) |
| 18         | 11667(6) | 1578(3)  | 16(5)    | 5.68(7) |
| :19        | 15188(7) | 2093(4)  | 1177(7)  | 7.58(9) |
| 20         | 15370(6) | 523(4)   | 2335(6)  | 7.37(9) |
|            |          |          |          |         |

#### Beq=(8/3) R<sup>2</sup> X1 X1 U11 = 1 = 1 = 1 = 1

Table VII : Bond distances (Å).

| C2 -M1   | 1.488( 3) | C4 -#1   | 1.476(4)  |
|----------|-----------|----------|-----------|
| NT -N1   | 1.410( 3) | C3 -C2   | 1.585( 4) |
| C16 -C2  | 1.474(4)  | C18 -C2  | 4.511(4)  |
| C4 -C3   | 1.544( 4) | C19 -C3  | 1.517(5)  |
| C20 -C3  | 1.517(5)  | S6 -#5   | 1.655(2)  |
| 07 -56   | 1.422(2)  | 08 -56   | 1.428( 2) |
| C9 -56   | 1.755(3)  | C10 -C9  | 1.378( 4) |
| C14 -C9  | 1.378(4)  | C11 -C10 | 1.381( 5) |
| C12 -C11 | 1.380( 4) | C13 -C12 | 1.375(4)  |
| C15 -C12 | 1.503( 5) | C14 -C13 | 1.383( 5) |
| N17 -C16 | 1.142( 4) |          |           |

```
Table VIII: Bond angles (°)
```

| C4   | -#1  | -C2  | 92.1(2)  | N5   | -#1  | -C2  | 117.8(2) |
|------|------|------|----------|------|------|------|----------|
| NG - | -#1  | -C4  | 120.4(2) | C3   | -62  | -#1  | 85.6(2)  |
| C16  | -C2  | -#1  | 112.1(2) | C16  | -C2  | -C3  | 111.0(2) |
| C18  | -C2  | -N1  | 115.0(2) | C18  | -02  | -C3  | 122.2(3) |
| C18  | -C2  | -C16 | 109.2(3) | C4   | -C3  | -C2  | 86.0(2)  |
| C19  | -C3  | -C2  | 111.2(3) | C19  | -C3  | -C4  | 112.7(3) |
| C20  | -C3  | -C2  | 117.2(3) | C20  | -C3  | -C4  | 116.5(3) |
| C20  | -C3  | -C19 | 111.1(4) | C3   | -C4  | -#1  | 87.5(2)  |
| \$6  | -N5  | -#1  | 112.7(2) | 07   | -56  | -N5  | 107.2(1) |
| 08   | -56  | -N5  | 103.9(1) | 08   | -56  | -07  | 120.4(2) |
| C9   | -56  | -#5  | 106.4(1) | C9   | -56  | -07  | 108.3(1) |
| C9   | -56  | -08  | 109.8(1) | C1 0 | -C9  | -56  | 119.7(2) |
| C14  | -09  | -56  | 119.9(2) | C14  | -69  | -C10 | 120.3(3) |
| C11  | -C10 | -C9  | 119.5(3) | CIZ  | -C11 | -C10 | 121.1(3) |
| C13  | -C12 | -C11 | 118.4(3) | C15  | -C12 | -C11 | 120.2(3) |
| C15  | -C12 | -C13 | 121.4(3) | C14  | -C13 | -C12 | 121.5(3) |
| C13  | -C14 | -C9  | 119.2(3) | N17  | -C16 | -C2  | 173.3(3) |
|      |      |      |          |      |      |      |          |

<u>Table IX</u> : Torsion angles (\*) ( $\sigma$ =1).

| C4   | -N1  | -C2  | -C3   | -22  |
|------|------|------|-------|------|
| C4   | -#1  | -C2  | -C16  | 88   |
| C4   | -#1  | -C2  | -C18  | -146 |
| N 3  | -#1  | -C2  | -C3   | -149 |
| N5   | -N1  | -C2  | -C16  | -38  |
| N5 - | -N1  | -C2  | -C18  | 88   |
| CZ   | -N1  | -C4  | -C3   | 23   |
| N5   | -#1  | -64  | -C3   | 147  |
| C2   | -//1 | -N5  | -56   | -140 |
| C4   | -#1  | -N5  | -56   | 109  |
| M    | -C2  | -C3  | -C4   | 21   |
| N1.  | -C2  | -C3  | -C19  | -91  |
| #1   | -C2  | -C3  | -C20  | 139  |
| C16  | -C2  | - 63 | -64   | -91  |
| C16  | -C2  | -C3  | -C19  | 156  |
| C16  | -C2  | -C3  | -C20  | 27   |
| C18  | -C2  | -C3  | -C4   | 138  |
| C18  | -C2  | -C3  | -019  | 25   |
| C18  | -C2  | -C3  | -C20  | -104 |
| M1 - | -C2  | -C16 | -N17  | -166 |
| C3   | -C2  | -C16 | -N17  | -72  |
| C13  | -C2  | -C16 | -#17  | 65   |
| C2   | -C3  | -C4  | -#1   | -21  |
| C19  | -C3  | -C4  | -N1   | 90   |
| C20  | -C3  | -C4  | -N1   | -140 |
| N1   | -1/5 | -56  | -07   | 62   |
| 111  | -#5  | -56  | -08   | -170 |
| N1 - | -115 | -56  | -C9   | -54  |
| N5   | -56  | -C9  | -C10  | 84   |
| N5   | -56  | -09  | -C14  | -93  |
| 07   | -56  | -69  | -C10  | - 31 |
| 07   | -56  | -C9  | -C14  | 152  |
| 08   | -56  | -C9  | -C1 0 | -164 |
| 08   | -56  | -C9  | -C14  | 19   |
| 56   | -63  | -C10 | -C11  | -174 |
| C14  | -69  | -C10 | -C11  | 3    |
| 56   | -09  | -014 | -C13  | 174  |
| C10  | -09  | -C14 | -C13  | -2   |
| C9   | -C10 | -C11 | -012  | -1   |
| C10  | -C11 | -012 | -C13  | -1   |
| C10  | -C11 | -C12 | -C15  | 178  |
| C11  | -C12 | -C13 | -C14  | . 2  |
| C15  | -C12 | -C13 | -C14  | -177 |
| C12  | -C13 | -C14 | -C9   | 0    |



Figure 1 : Stereoscopic view of 3-cyano-1-(4-methylbenzenesulphonyl)amino-2,3,3trimethylazetidine 54.

The spectral data of 2-cyanoazetidines 5 are compiled in Tables II and III. In the <sup>1</sup>H-NMR spectrum the CH<sub>2</sub>-group of the azetidine ring mostly shows an AB-system (J = 6.4-6.8Hz). If the substituent on nitrogen is a benzyl group, also the CH<sub>2</sub>-group of the substituent on nitrogen shows an AB-system in the <sup>1</sup>H-NMR spectrum. The coupling constant (J) of the CH<sub>2</sub>-group on the nitrogen substituent is quite different (J = 12.4-13.2Hz) in such a way that both signals can easily be distinquished in the <sup>1</sup>H-NMR spectrum.

The stable azetidines 5 were easily converted into the corresponding hydrochlorides <u>16</u> with dry hydrogen chloride in ether (Scheme VIII). Recrystallisation of the hydrochlorides was performed in a mixture of acetone and ether (1/1). By



reaction of azetidines  $\underline{5}$  with methyllithium in diethylether the corresponding 2-acetimidoylazetidines  $\underline{18}$  were formed. The latter were hydrolyzed with an aqueous hydrogen chloride solution to give the corresponding acetylazetidines  $\underline{19}$  in high yield (Scheme VIII). On reaction with potassium hydroxide in absolute ethanol, 2-cyanoasetidine  $\underline{5a}$  (R=C<sub>6</sub>H<sub>5</sub>) was transformed into the corresponding azetidine-2carboxamide  $\underline{17}$  (Scheme VIII). The synthesis and spectral data of 2-imidoylazetidines  $\underline{18}$ , 2-acetylazetidine  $\underline{19}$  and 2-carbamoylazetidine  $\underline{17}$  are given in the experimental section.

This high yield synthesis of 2-cyanoazetidines 5 provides a new approach to this class of small-ring heterocycles. According to the literature, some 2-cyano-azetidines could be converted into useful medicinal products, such as appetite depressants and products which can control obesity<sup>8</sup>. In addition, a number of related compounds, such as azetidine-2-carboxylic acids, received already a lot of attention in the literature because of their occurrence in the amino acid fraction of plants.

Reaction of β-Chloro Imines with Lithium Aluminium Hydride : Synthesis of Azetidines

The reaction of  $\beta$ -chloro imines <u>4</u> with lithium aluminium hydride (LAH) in dry ether proceeds practically in an identical way as the reaction of  $\beta$ -chloroimines <u>4</u> with potassium cyanide in methanol (Scheme IX). After nucleophilic addition of





<u>21a</u>





<u>21d</u>







SCHEME IX

hydride across the imino function of imine  $\underline{4}$ , adduct  $\underline{20}$  is formed, which undergoes ring closure with the expulsion of a chloride anion and the formation of azetidines  $\underline{21}$  in high yields (65-95%). Via this way a lot of azetidines  $\underline{21}$  were prepared but the reaction of  $\beta$ -chloro ketimine  $\underline{4}$  ( $R_1 = C_6 H_5$ ;  $R_2 = R_3 = CH_3$ ;  $R = CH_2 C_6 H_5$ ) with LAH in dry ether never gave rise to the corresponding azetidine. Even after a reflux period of 20 hours no azetidine was observed in the reaction mixture (Table I, entry 18), but the starting material was totally recovered. The synthesis of azetidines 21 is given in Table I while the spectral data of compounds 21 are compiled in Tables II and III.

1-Benzyl-3,3-dimethylazetidine 21a, obtained as described above, reacts with methyl iodide in acetonitrile with the formation of the azetidinium salt 22. It is known from the literature, that this azetidinium iodide can be transformed into 1,4,4-trimethyl-2-phenylpyrrolidine 23 on reaction with potassium amide in liquid ammonia (Stevens rearrangement)<sup>26-30</sup>. Accordingly, the conversion of  $\beta$ -chloroimines <u>4</u> into azetidines <u>21</u> provides an additional entry into pyrrolidines via this rearrangement.



As already pointed out above, azetidines were already described in the literature in a number of publications<sup>3-5</sup>. Some azetidines prepared via this novel method described in this article, have already been prepared by ring closure of N-alkylamines having a good leaving group in the  $\gamma$ -position<sup>29,30</sup> or by reduction of some azetidinones<sup>31,32</sup>.

In conclusion, the reaction of  $\beta$ -chloro imines with cyanide or hydride opens a new and attractive way for the generation of 2-cyanoazetidines 5 and azetidines 21.

### Experimental section :

Infrared spectra were recorded with a Perkin Elmer model 1310 spectrophotometer while <sup>1</sup>H NMR spectra were measured with Varian T-60 (60 MHz) or Bruker WH-360 FT (360 MHz) spectrometers. <sup>13</sup>C NMR spectra were taken on Varian FT 80 (20 MHz) or Bruker WH-360 FT (50 MHz) spectrometers. Mass spectra were obtained from a Varian MAT 112 mass spectrometer (direct inlet system; 70 eV).

### Preparation of $\beta$ -chloro imines 4, 6 and 13

 $\beta$ -Chloro imines 4, 6 and 13 were synthesized according to our previously published method involving condensation of  $\beta$ -halo ketones or  $\beta$ -haloaldehydes with primary amines in ether (or benzene) with or without the presence of titanium(IV) chloride<sup>1</sup>. For the preparation of aldimines (4g, 4h, 4i), the corresponding aldehyde anhydrous magnesium sulphate and the primary amine were stirred in ether during several hours at room temperature (5h-1d). After stirring, the reaction mixture was filtered and the solvent was evaporated in vacuo and afterwards, the residual product was distilled.

For the preparation of  $\beta$ -chloroketimines (4a, 4b, 4c, 4d, 4e, 4f, 4j) and  $\beta$ -chloroaldehyde 6 titanium(IV) chloride in pentane was added to a cooled ethereal solution of the  $\beta$ -chloro ketone or  $\beta$ -chloroaldehyde and the primary amine (benzene was used as solvent for  $\beta$ -chloro imine 4d and 4j). The reactions were run over several hours at ambient temperature (6 : 4 hours) or at reflux temperature (4d and 4j : 1 day; 4e : 3 days; 4f; 4a; 4b; 4c : 1-5 hours). Regular sampling of the reaction is advisable in order to determine the degree of conversion (1N NaOH (ether; test tube; GC analysis or preferably NMR monitoring). Workup of all reaction mixtures was done with an aqueous sodium hydroxide solution as described previously<sup>1</sup> except in the case of less volatile amines (e.g. benzylamine) where the filtration method was used Hydrazone 13 was prepared by reaction of 4-chloro-3,3-dimethyl-2-butanone with 0.9 equivalents of tosylhydrazine in dichloromethane at reflux temperature (2-3 days) in the presence of a catalytic amount of para-toluenesulphonic acid (the normal hydrazone formation). Hydrazone 13 is a crystalline compound isolated in high yield (95%). Physical and spectral data of all new compounds (13, 4d, 4e, 4f, 4i and 4j) are compiled in Table IV and V. The remaining  $\beta$ -chloro imines have been described in a previous paper<sup>1</sup>. All  $\beta$ -chloro imines used in this paper gave a halogen analysis in agreement with the proposed structure. All compounds in this paper are obtainable in a purity of at least  $\beta$ -theorem is the structure. of at least 97% (GLC, spectrometric methods).

# Synthesis of 2-cyanoazetidines 5 (General Procedure) :

A solution of 0.01 mol of  $\beta$ -chloro imine <u>4</u> in dry methanol (10% solution W/V) created with 0.02 mol of potassium cyanide. After stirring (magnetic bar) was treated with 0.02 mol of potassium cyanide. After stirring (magnetic bar) under reflux during several hours as mentioned in Table I, the reaction mixture was cooled and afterwards poured into water (200 ml). Extraction of the organic components was performed with ether or dichloromethane (3x : 100 ml), the combined extracts were dried (MgSO<sub>4</sub>) and after removal of the drying agent the solvent was evaporated to leave a clear oil which was distilled and analyzed by gas chromato-graphy. The spectroscopic data of 2-cyanoazetidines 5 are given in Tables II and III.

## Synthesis of Oxetanes 9 and 10 :

Oxetanes 9 and 10 were prepared according to the procedure described above, namely by reaction of 4-bromo-3,3-dimethyl-2-butanone 8 with potassium cyanide in methanol or isopropanol. After reflux during several hours the reaction mixtures were analysed by preparative gas chromatography. Via this method products 9 and 10, present in the reaction mixture when the reaction was performed in methanol, could easily be separated.

# 2-Cyano-2,3,3-trimethyloxetaan 9 (Yield 33-100%)

<sup>1</sup>H-NMR (60 MHz, CDCl<sub>3</sub>) : δ 1.30 (3H, s, C<u>H</u><sub>3</sub>); 1.49 (3H, s, C<u>H</u><sub>3</sub>); 1.67 (3H, s, C<u>H</u><sub>3</sub>); 4.43 and 4.21 (2H, 2xd, AB-system, J=5.6Hz, CH2).

IR (NaCl)  $v_{C \equiv N}$ : 2237 cm<sup>-1</sup>. Mass Spectrum (70 eV) m/e (%) : no M<sup>+</sup>; 95(12); 94(2); 83(2); 80(3); 73(8); 72(7); 71(2); 70(4); 69(2); 68(8); 67(3); 64(2); 59(2); 58(33); 57(3); 56(21); 55(14); 54 (2); 53(5); 44(12); 43(100); 42(10); 41(28); 40(88). 13C-NMR (20 MHz, CDC13) :  $\delta$  119.7 ( $B, C \in N$ ); 83.4 (B, C - CN); 80.9 ( $t, C H_2$ ); 41.5 (B, C M = 2); 25.0 ( $q, C H_3$ ); 22.3 ( $q, C H_3$ ); 21.4 ( $q, C H_3$ ).

#### Compound 10 (Yield 0-67%)

1<sub>H-NMR</sub> (60 MHz; CC1<sub>4</sub>) : δ 1.06 (3H, s, CH<sub>3</sub>); 1.21 (3H, s, CH<sub>3</sub>); 1.37 (3H, s, CH<sub>3</sub>); 3.70  $(3H, s, OCH_3)$ ; 4.02 and 4.19 (2H, 2xd, AB-system, J=5.6Hz, CH<sub>2</sub>); NH invisible. IR (NaCl) v<sub>NH</sub> : 3300 cm<sup>-1</sup>; v<sub>C=N</sub>: 1662 cm<sup>-1</sup>.

#### Synthesis of azetidinium chloride 16 :

Dry hydrogen chloride was bubbled during half an hour through a solution of 0.01 mol of 0-cyanoazetidine 5c in ether (10% solution W/V). The azetidinium chloride 16 precipitated and was isolated by filtration. Recrystallisation was performed in a mixture of acetone and ether (1/1).

# Azetidinium chloride 16 :

<sup>1</sup>H-NMR (60 MHz, CDCl<sub>3</sub>) : <sup>§</sup> 1.41 and 1.57 (6H,2xd,J=6.4Hz,(CH<sub>3</sub>)<sub>2</sub>CH); 1.48 (3H,s, CH<sub>3</sub>); 1.63 (3H,s,CH<sub>3</sub>); 2.07 (3H,s,CH<sub>3</sub>); 3.69 and 3.91 (2H,2xd,AB-system,J=9.6Hz, CH2); NH invisible CH(CH3)2 under AB-system of CH2. Cm\_2, , Cm\_ Intratore Cm(cm\_3, 2 under AB-Bystem Of Cm\_2. IR (KBr) V<sub>CEN</sub> : 2215 cm<sup>-1</sup> <sup>13</sup>C-NMR (20 MHz, CDCl<sub>3</sub>) : δ 114.9 (s,CEN); 71.6 (s,C-CEN); 61.4 (t,CH<sub>2</sub>); 57.9 (d,CH); 38.4 (s,C(CH<sub>3</sub>)<sub>2</sub>); 25.2 (q,CH<sub>3</sub>); 21.1 (q,CH<sub>3</sub>); 19.5 (q,CH<sub>3</sub>); 18.0 (q,CH<sub>3</sub>); 16.7 (q,<u>C</u>H<sub>3</sub>).

# Reaction of a-cyanoazetidines 5 with methyllithium :

A solution of 0.01 mol of  $\alpha$ -cyanoazetidine <u>5a</u> or <u>5c</u> in ether or tetrahydrofu-ran was cooled in an ice bath and treated dropwise under nitrogen with a solution of methyllithium in ether (1.5 molar equivalents). After stirring during 2-3 hours at room temperature, the reaction mixture was poured into water. The organic layer was separated and the aqueous phase was extracted twice with ether. The combined ethereal extracts were dried (MgSO4) and the solvent was evaporated to afford pure azetidines 18.

# Azetidine 18a (R=C6H5; yield 87%)

IR (NaCl) :  $v_{C=N}$  : 1647 cm<sup>-1</sup>;  $v_{NH}$  : 3210 cm<sup>-1</sup> H=NMR (60 MHz, CDCl<sub>3</sub>) :  $\delta$  1.13 (6H,s, (CH<sub>3</sub>)<sub>2</sub>); 1.33 (3H,s,CH<sub>3</sub>); 1.92 (3H,s,CH<sub>3</sub>C=N) 3.30 (2H,s,CH<sub>2</sub>); 6.20-7.30 (5H,m,C<sub>6</sub>H<sub>5</sub>). Mass Spectrum (70 eV) m/e (%) : 216 (M<sup>+</sup>;7); 175(6); 174(42); 124(11); 118(9); 106(10); 105(6); 77(17); 72(18); 56(8); 44(6); 43(13); 42(12); 41(22); 40(100). <sup>13</sup>C-NMR (20 MHz, CDCl<sub>3</sub>) :  $\delta$  179.2 (s,C=N); 147.8 (s,Cq); 128.8, 118.5 and 114.3 (3xd,Co,Cm and Cp); 77.8 (s,CC=N), 59.3 (t,CH<sub>2</sub>); 36.8 (s,C(CH<sub>3</sub>)<sub>2</sub>); 24.9; 21.6 and 21.7  $(3xq, 3xCH_3)$ ; 14.7  $(q, CH_3CC=N)$ 

# Azecidine 18b (R=i-Pr; yield 95%)

IR (NaCl) :  $v_{C=N}$  : 1652 cm<sup>-1</sup>;  $v_{NH}$  : 3200 cm<sup>-1</sup> 1H-NMR (60 MHz, CDCl3) : 6 0.80 and 0.94 (6H,2xd, J=6.1Hz,CH(CH3)2); 0.98 (3H,s, CH<sub>3</sub>); 1.03 (3H,s,CH<sub>3</sub>); 1.26 (3H,s,CH<sub>3</sub>); 1.84 (3H,s,CH<sub>3</sub>C=N); 2.43 (1H,septet,J=6.1 Hz,CH(CH<sub>3</sub>)<sub>2</sub>); 2.60 and 2.98 (2H,2xd,AB-system,J=6.2Hz,CH<sub>2</sub>). Mass Spectrum (70 eV) m/e (%) : no M<sup>+</sup>; 141(12); 140(100); 112(22); 111(6); 98(71); 95(5); 84(8); 72(6); 70(8); 69(12); 57(9); 56(20); 55(11); 53(6); 44(7); 43(21); 2(68); 41(39); 40(19). 42(68); 41(39); 40(19).  $1_{3C-NMR}$  (20 MHz, CDC13) : 6 180.6 (s,C=N); 73.0 (s,CC=N); 60.6 (t,CH<sub>2</sub>); 49.7 (d, NCH); 35.3 (s,C(CH<sub>3</sub>)<sub>2</sub>); 24.9; 22.8; 22.0; 21.7 and 20.0 (5xq,C(CH<sub>3</sub>)<sub>2</sub>) and 3xCH<sub>3</sub>);  $1\overline{1.6}$  (q,CH<sub>3</sub>CC= $\overline{X}$ ).

# Hydrolysis of 2-acetimidoylazetidine 18a :

Stirring a solution of azetidine 18a in an aqueous hydrogen chloride solution (10E/2N) at room temperature during one day resulted in the quantitative formation of 2-acetylazetidine 19, which was isolated after extraction of the organic compounds with dichloromethane, drying of the combined extracts (MgSO4) and evaporation of the solvent. Compound 19 was isolated in pure form with a yield of 84%.

### 2,3,3-trimethyl-2-(1-oxoethyl)-1-phenylazetidine

IR (NaCl) :  $v_{C=0} = 1720 \text{ cm}^{-1}$ 

IR (NACL):  $V_{C=0} = 1/20$  cm<sup>-1</sup> <sup>1</sup>H-NMR (60 MHz, CDCl<sub>3</sub>):  $\delta$  1.21 (3H,s,CH<sub>3</sub>); 1.28 (3H,s,CH<sub>3</sub>); 1.43 (3H,s,CH<sub>3</sub>); 2.23 (3H,s,CH<sub>3</sub>C=O); 3.43 and 3.51 (2H,2xd,AB-system,J=6.6Hz,CH<sub>2</sub>); 6.20-7.40 (5H,m,C<sub>6</sub>H<sub>5</sub>). <sup>1</sup>3C-NMR (20 MHz, CDCl<sub>3</sub>):  $\delta$  211.1 (s,C=O); 147.5 (s,Cq); 128.8; 117.9 and 113.5 (3xd; Co,Cm and Cp); 79.1 (s,C=O); 59.5 (t,CH<sub>2</sub>); 38.2 (s,C(CH<sub>3</sub>)<sub>2</sub>); 27.6; 24.7 and 12.2 (3xc, 3xcH<sub>2</sub>) = 1 (a, H<sub>2</sub>C(C=O)) 22.3  $(3xq, 3xCH_3)$ ; 15.1  $(q, H_3CCC=0)$ .

## Reaction of 2-cyanoazetidine 5a with potassium hydroxide in ethanol :

To a solution of 0.01 mol of  $\alpha$ -cyanoazetidine <u>5a</u> in dry ethanol 0.05 mol potassium hydroxide was added and then the reaction mixture was refluxed during one day. Afterwards most of the ethanol was evaporated and the residu was poured into 100 ml of water. The aqueous layer was extracted with dichloromethane (3x20 ml) and the combined extracts were dried  $(MgSO_4)$ . After filtration, the solvent was evaporated to leave a solid residue which consisted of pure amide 17 (yield : 81%; melting point 150°C).

# Azetidine 17 :

IR (NaCl) :  $v_{C=0}$  : 1677 cm<sup>-1</sup>;  $v_{NH_2}$  = 3459 cm<sup>-1</sup> <sup>1</sup>H-NMR (60 MHz, CDCl<sub>3</sub>) :  $\delta$  1.17 (3H,s,CH<sub>3</sub>); 1.40 (3H,s,CH<sub>3</sub>); 1.43 (3H,s,CH<sub>3</sub>); 3.41 and 3.45 (2H,2xd,AB-system,J=7.8Hz,CH<sub>2</sub>); 6.40-7.40 (5H,m,C6H5). Mass Spectrum (70 eV) m/e (%) : 218 (M<sup>+</sup>,15); 175(17); 174(100); 159(8); 158(9); 145(7); 144(11); 132(11); 118(21); 106(41); 105(10); 104(9); 103(8); 77(32);  $^{13}C-NMR$  (20 MHz, CDCl<sub>3</sub>) :  $\delta$  176.7 (s,C=O); 147.1 (s,Cq); 129.0; 118.8 and 114.2 (3xd;Co,Cm and Cp); 74.5 (s,CC=O); 59.8 (t,CH<sub>2</sub>); 37.4 (s,C(CH<sub>3</sub>)<sub>2</sub>); 24.9 and 22.1 (2xq;C(CH<sub>3</sub>)<sub>2</sub>); 14.3 (q,CH<sub>3</sub>-C-C=N).

## Synthesis of azetidines 21 (General Procedure)

A solution of 0.01 mol of  $\beta$ -halo imine 4 in freshly distilled dry ether was treated with 0.02 mol of lithium aluminium hydride. The reaction was stirred under reflux during several hours as indicated in Table I. Afterwards the reaction mixture was poured into 200 ml of water and extracted with ether (3x30 ml). The combined extracts were dried (MgSO4), the drying agent was removed and the solvent evaporated. The residue was analyzed by preparative gas chromatography, revealing only one compound i.e. azetidine <u>21</u>. The spectral data of azetidines 21 are compiled in Tables II and III.

# Synthesis of azetidinium lodide 22

To a solution of 0.01 mol of 1-benzyl-3,3-dimethylazetidine 21a in acetonitrile was added 0.05 mol of methyl iodide and the reaction mixture was stirred at room temperature during 12 hours. The solvent and the excess methyl iodide were evaporated and the residual azetidinium iodide 22 was isolated as a solid material.

# Azetidinium iodide 22

<sup>1</sup>H-NMR (60 MHz, CDCl<sub>3</sub>) : 6 0.98 (3H,s,C<u>H</u><sub>3</sub>); 1.43 (3H,s,C<u>H</u><sub>3</sub>); 3.64 (3H,s,C<u>H</u><sub>3</sub>-N); 4.24 and 4.60 (4H,2xd,AB-system,J=11.4Hz,ring CH2); 5.07 (2H,s,CH2C6H5); 7.20-8.00 (5H,m,C6H5). <sup>13</sup>C-NMR (20 MHz, CDCl<sub>3</sub>) : 6 132.9 (s,Cq); 130.9; 129.4 and 128.6 (3xd,Co,Cm and

<u>Cp</u>); 73.7 (t,ring <u>CH2</u>); 67.0 (t,<u>CH2C6 $\overline{H5}$ ); 54.0 (q,<u>CH3N</u>); 28.7 (s,<u>C</u>(CH3<u>J</u>2); 28.4</u> and 26.6 (2xq,C(CH3)).

References

- \* N. De Kimpe, to whom correspondance should be addressed, "Senior Research Associate" (Onderzoeksleider) of the Belgian "National Fund for Scientific Research\* (Nationaal Fonds voor Wetenschappelijk Onderzoek);
- 1. P. Sulmon, N. De Kimpe, R. Verhé, L. De Buyck and N. Schamp, Synthesis, 192 (1986).
- 2. P. Sulmon, N. De Kimpe and N. Schamp, Synthesis (submitted).
- 3. D.E. Davies and R.C. Storr in "Comprehensive Heterocyclic Chemistry", Vol. 7, Part 5, ed. W. Lwowski, Pergamon Oxford, 237-284 (1984).
- J.A. Moore and R.S. Ayers, in "Chemistry of Heterocyclic Compounds Small Ring Heterocycles", Part 2, Ed. A. Hassner, Wiley, New York, 1-217 (1983).
   N.H. Cromwell and B. Phillips, Chem. Rev., <u>79</u>, 331 (1979).
   J.C. Guillemin, J.M. Denis and A. Lablache-Combier, J. Am. Chem. Soc., <u>103</u>,
- 468 (1981).
- 7. T. Masuda, A. Chinone and M. Ohta, Bull. Chem. Soc. Jpn., <u>43</u>, 3281 (1970). 8. E.H. Gold and D.M. Solomon, Ger. Offen. 2,548,053 (1976); Chem. Abstr., <u>85</u>, 46359g (1976).
- 9. T.-Y. Chen, M.-H. Hung, P.-T. Chen and M. Ohta, Bull. Chem. Soc. Japan, <u>45</u>, 1179 (1972).
- 10. M. Shiozaki, H. Maruyama and N. Ishida, Chem. Abstr., 101, 191455p (1984); Heterocycles, 22, 1725 (1984). 11. P. Sulmon, N. De Kimpe and N. Schamp; J. Chem. Soc. Chem. Commun., 715 (1985).
- 12. E. Elkik, P. Vaudescal and H. Normant; C.R. Acad. Sci. Ser. C, 264, 1779 (1967). 13. K. Lucas, P. Weyerstahl, H. Marschall and F. Nerdel, Chem. Ber., 104, 3607 (1971).
- S. Tsutsumi, Y. Kahira and T. Shimohira, Japan 70 04,496 (Cl. 16E2), 16 Feb. 1970, Appl. 16 Mar. 1967; Chem. Abstr., <u>73</u>, 25283q (1970).
   O. Yoshinobu, S. Takashi and T. Shigeru, Chem. Commun., 757 (1967).
- 16. J.C. Dalton, P.A. Wriede and N.J. Turro, J. Am. Chem. Soc., <u>92</u>, 1318 (1970). 17. J.J. Beereboom and M. Schach V. Wittenau, J. Org. Chem., <u>30</u>, 1234 (1965).
- 18. T.S. Cantrell, Chem. Commun., 637 (1975).
- 19. J.A. Barltrop and H.A.J. Carless, J. Am. Chem. Soc., 94, 1951 (1972).
- 20. Y. Shigemitsu, Y. Odaira and S. Tsutsumi, Tetrahedron Lett., 55 (1967).
- 21. J.A. Barltrop and H.A.J.Carless, Tetrahedron Lett., 3901 (1968).
- 22. H.W. Scheeren, R.W.M. Aben, P.H.J. Ooms and R.J.F. Nivard, J. Org. Chem., <u>42</u>, 3128 (1977).
- 23. P.H.J. Ooms, H.W. Scheeren and R.J.F. Nivard, J. Chem. Soc. Perkin Trans. I, 1048 (1976). 24. T.I. Temnikova, N.A. Venediktova and S.N. Semenova, Zh. Org. Khim., 2050
- (1968); Chem. Abstr., <u>70</u>, 28720d (1969). 25. H. Marschall and W.B. Muehlenkamp, Chem. Ber., <u>109</u>, 2785 (1976). 26. A.G. Anderson, Jr. and M.T. Wills, Angew. Chem. Int. Ed. Engl., <u>6</u>, 557
- (1967).
- 1967). 27. A.G. Anderson, Jr. and M.T. Wills, J. Org. Chem., <u>32</u>, 3241 (1967). 28. A.G. Anderson, Jr. and M.T. Wills, J. Org. Chem., <u>33</u>, 536 (1968). 29. A.G. Anderson, Jr. and M.T. Wills, J. Org. Chem., <u>33</u>, 2123 (1968). 30. A.G. Anderson, Jr. and M.T. Wills, J. Org. Chem., <u>33</u>, 3046 (1968). 31. M.B. Jackson and L.N. Mander, Aust. J. Chem., <u>36</u>, 779 (1983). 32. C. Verkoyen and P. Rademacher, Chem. Ber., <u>118</u>, 653 (1985).